
Eliminate the “no repro” bug…
Visual Studio Test Professional

Randy Pagels

Sr. Developer Technical Specialist

Microsoft Corporation

rpagels@microsoft.com

www.teamsystemcafe.net

• Test Planning

• Manual Testing

• Rich Bug Generation

• Automated Testing

• Exploratory Testing

• Lab Management

• Test Progress Reporting

Agenda

“we have a changed

requirement, what

do I need to test?”

Have you heard any of these?

“my testers are

spending too

long testing the

same thing”

“tooling is

expensive (time,

licenses, people)”

“developers and testers

work in silos and don’t

communicate/speak the

same language”

“when is my

software ready

to ship?”

“the developers

say the defects

are useless”

What if you could…

reduce the time it

takes to determine

the root cause of a

bug

enable users to easily

run acceptance tests

and track their results

reduce the time it takes

to verify the status of a

reported bug fix

reduce the time it

takes to replicate a

bug uncovered by

user actions

reduce the time it takes to

isolate differences between

the test and production

environment

Its Time For A Positive Change

Welcome to the revolution

Its Time For Change

Visual Studio 2010

Generalist Specialist

Manual

Testing

Some

scripting

Creates

scripts to set

up lab, create

data

Strong

scripting skills

Some

coding skills

Strong coding

Develops fully

automated

testing

procedures

Expert

coding skills

Where does testing happen?

Black Box Testing

White Box Testing

API Testing

70% of testing

happens here

Majority of test tools

target here

Visual Studio 2010 Test Capabilities

Team Foundation Server Reporting

re
le

a
se

 p
la

n
n

in
g

set test strategy

define done, done

establish
environments

review
configurations

create plans

generate data

multiple iterations

What testers do

inception construction release

re
le

a
se

 i
te

ra
ti

o
n

regression testing

release doneness
testing

release sign off

it
e
ra

ti
o

n
 p

la
n

n
in

g

add stories to plan

define acceptance

select regression
tests

it
e
ra

ti
o

n
 e

xe
cu

ti
o

n

author tests

run tests

file bugs

verify fixes

automate tests

it
e
ra

ti
o

n
 r

e
tr

o
sp

e
ct

iv
e

update master
plan

identify product
debt

identify test debt

select test for
automation

iteration 1 iteration 2 release iteration

feature a feature b feature c feature d

unit

testing

manual

testing

regression

testing

performance

testing

feature a

Testing Strategy

Dev-Test Collaboration

• Unified toolset in Visual
Studio 2010

• Testers focus on testing
rather than collecting data

• Developers get exactly the
data they need in the bugs

• Make the tester and
developer PRODUCTIVE

Typical Test Cycle

Write test

cases

Do testing

on app

File bugs

Verify

resolved

bugs

Create and

run

regression

tests

New build comes in

3 Primary Activities for Testers

• Test planning

• Test execution and bug
filing

• Creation of regression
tests

Activity: Test Planning

• Test Plans

• Test Suites for
Requirements

• Test Cases with
Shared Steps

• Test Configurations

• Tracking Test Results

Test Planning Details

• Data drive test cases with different
parameters

• Refactor common shared steps in test cases

• Link test cases and requirements to provide
requirement traceability

• Create dynamic test suites for changing
selection criteria

• Define various test configurations and share
automation across those

Test Settings

• What information do we need?

• For each type of test…

• For each machine in a test

environment…

• What is the overhead associated with

collecting various pieces of information?

• Are there custom data diagnostic

adapters we should invest in authoring?

Diagnostic Data Adapters

● Video Capture

● Steps Performed

● System Info

● IntelliTraceTM

● System Info

● IntelliTraceTM

● Event Logs

● Test Impact Data

● Custom Data Collection ● Network Emulation

Increasing Effectiveness

Test Case Bug! Test Results

System under

Test

Data Collectors

Indexed

Video
Screen

Captures
Event Logs

System

Information

IntelliTrace

Logs

• Provide developers with comprehensive technical details to analyse and fix defects

Test Environment

Developer
Tester

Environment

Snapshot

Custom

…

Action

Recording

TFS - Team project

Work Items

• Req.

• Bug

• Test Case

• …etc.

Source Code

Automated
Builds

Test plans(s)

Start & End
Dates

Test
Configuration

Manual
Automated

Test
Settings

Manual
Automated

Anatomy of a Test Plan & Related Artifacts

Test suite(s)

Requirement

Stand-alone
suite

Query-based
suite

Test case(s) – TFS work item

Steps

Test Data

Parameters

Automation
Status

State

Test run (s)

Previous
Runs

 Active

 Passed

 Failed

Blocked?

Reporting

Results

Failure Type

Resolution

Iteration
Details

Attachments

Result
History

Test Planning & Setup

Activity: Test Execution and Bug Filing

• Run test cases manually

• Fast Forward for
Manual Testing

• File actionable bugs

• Verify fixed bugs

• Decide what to test on
new build

Test Execution and Bug Filing

• Collect relevant data automatically to file
rich actionable bugs

• Get list of fixed bugs to verify with
corresponding test cases

• Figure out impacted tests to run based on
code churn in build

• Do exploratory testing on app to find bugs
faster

Manual Test Execution

%
of all functional testing

is still done manually.

• Create a test case for a

regression

• Automate functional tests

• Record actions or import

action recording from test

• Easily repeatable

• Maintain it through the
product cycle

• Run the test as port of the
build-workflow

Activity: Creation of Regression Tests

Automate Regression Tests
• Coded UI Test

Code UI Testing Best Practices

• Use the Coded UI Test Builder whenever possible.

• Do not modify the RecordedMethods.cs file directly.

• Do not modify the UIMap.designer.cs file directly.

• Create your test as a sequence of recorded methods.

• Create a new test method for each new page, form, or
dialog box.

• When you create a method, use a meaningful method
name instead of the default name.

• When possible, limit each recorded method to fewer than
10 actions.

• Create each assertion using the Coded UI Test Builder.

• If the user interface (UI) changes, re-record the test
methods, or the assertion methods.

Code UI - PlayBack.PlayBackSettings

• ContinueOnError

• DelayBetweenActions

• MatchExactHierarchy

• SearchTimeOut

• SmartMatchOptions

• TopLevelWindow

• Control

• None

• ThinkTimeMultiplier

• WaitForReadyTimeout

Code UI - UITestControl.WaitForControl

• WaitForControlReady()

• WaitForControlEnabled()

• WaitForControlExist()

• WaitForControlNotExist()

• WaitForControlPropertyEqual()

• WaitForControlPropertyNotEqual()

• WaitForControlCondition()

Automation Platform Support
Fully supported platform

Partial solution. Further work

required in future to complete

Best efforts with known issues.

Users can workaround these cases

in the code. No major ongoing

investment.

Currently no support but on the

roadmap for future releases

Currently no support and none

planned for now. Opportunity for

partners to add this using the

Extensibility support. Docs and

samples around extensibility are

here.

For latest info refer to this article.

Platform Support Notes

IE7/8 – HTML/AJAX IE9 supported in SP1.

Windows Forms 2.0+

.NET Fx Controls fully supported,

working on 3rd party support.

WPF 3.5+

.NET Fx Controls fully supported,

working on 3rd party support.

SharePoint 2007 & 2010 See blog post for more info.

FireFox – HTML/AJAX
Supported in Feature Pack 2 for FF 3.5

& 3.6.

Silverlight
Supported in Feature Pack 2 for

Silverlight 4, in-browser apps.

Windows Win32
May work with some known issues,

but not officially supported.

Dynamics (Ax)

Partially supported – see article.

Dynamics CRM web client is

supported.

MFC
Partial support – Known issues &

Workarounds

Citrix/Terminal Services
The client (MTM or VS) need to be on

the remote machine.

Office Client Apps

IE 6/Chrome/Opera/Safari Opportunity for partners to add this

using the Extensibility support. Docs

and samples around extensibility are

here.
Flash/Java

SAP

http://blogs.msdn.com/b/gautamg/archive/2010/01/05/series-on-coded-ui-test-extensibility.aspx
http://msdn.microsoft.com/en-us/library/ff398055.aspx
http://msdn.microsoft.com/en-us/library/dd380742.aspx
http://blogs.msdn.com/b/vstsqualitytools/archive/2010/04/15/uitest-framework-sharepoint-support-for-vs-2010.aspx
http://msdn.microsoft.com/en-us/library/dd380742.aspx
http://blogs.msdn.com/b/vstsqualitytools/archive/2010/04/15/uitest-framework-mfc-support-in-vs-2010.aspx
http://blogs.msdn.com/b/vstsqualitytools/archive/2010/04/15/uitest-framework-mfc-support-in-vs-2010.aspx
http://blogs.msdn.com/b/vstsqualitytools/archive/2010/04/15/uitest-framework-mfc-support-in-vs-2010.aspx
http://blogs.msdn.com/b/gautamg/archive/2010/01/05/series-on-coded-ui-test-extensibility.aspx
http://msdn.microsoft.com/en-us/library/ff398055.aspx

What does
exploratory

testing mean
to you?

Exploratory Testing

Exploratory testing

• Exploratory testing is NOT ad-hoc

• There ARE ways to track exploratory
testing – choose the right metrics and
measure using tools

• Exploratory testing NEED NOT create
poorly documented bugs – use the right
tools to file rich actionable bugs

Exploratory Testing

Visual Studio Lab Management Highlights
Benefits

• Simplifies environment setup

• Quickly create complex multi-machine
environments

• Simplifies testing multiple configurations

• Enables reverting to baseline
configuration

• Provides checkpoints to aid defect
resolution

• Improves test hardware utilization
lowering total cost of ownership

• Full integration with TFS
 Goals

• Virtualize test lab resources

• Lower technical requirements for test environment
creation

• Enable environment recreation for defect resolution

In conclusion

• Test planning
• Dynamic test suites

• Requirement traceability

• Test execution and bug filing
• Actionable bug filing

• Test prioritization

• Automation of regression tests
• Coded UI tests

• Reuse manual test artifacts

Your Creativity Unleashed

− Save time, focus on high value tasks
− Fast Forward for Manual Testing

− High quality bugs with single click

− Create, manage, and execute test cases

− Web Performance & Load Testing
− Know your code is ready for the big time

− Measure performance under real time load conditions
and ensure that your applications are ready for release

− Rich Modern Experience
− Standalone testing suite

− Elegant Task focused UI

− Combined manual & fast forward for manual testing

− Capture still images, video, and system information

− Plan, Test, Track flow

Quality code ensured

− No more “no repro” with Test Manager
− Integrated, Extensible Diagnostics

− Actionable Rich Bugs, fix first time, every time

− Intellitrace for historical debugging

− Test Automation with Coded UI Tests
− Reduce regressions during a team build

− Familiar language & toolset support

− Add assertions on properties

− Convert test cases to code

− Eliminate wasted cycles with Lab Management
− Test in “production like environments”

− Automation of predictable build-deploy-test cycles

− Optimized test hardware utilization

− Simplified environment setup & deployment

− Checkpoints and reverting to baseline configuration

− Test across multiple configurations easily

− Rapid Setup/Teardown of Environments

Visit Team System Café for…

http://www.teamsystemcafe.net

• Freshly brewed news

• Upcoming events

• Download links

• Practical tips to go

• Download Visual Studio 2010 Trials

• http://tinyurl.com/ycfbfyo

• Get Started with Lab Management

• http://tinyurl.com/394nyfe

Appendix

Pass or Fail

each step

Data bind

parameters to

fields on

screen

Validation

checkpoint

Bug Form auto-filled

with step results &

step attachments

Found in Build &

System Info auto-

filled

